Circulation Sensitivity to Tropopause Height
نویسنده
چکیده
The possibility that the tropopause could be lower during an ice-age cooling leads to an examination of the general sensitivity of global circulations to the tropopause height by altering a constant stratospheric temperature Ts in calculations with a dry, global, multilevel, spectral, primitive equation model subject to a simple Newtonian heating function. In general, lowering the tropopause by increasing the stratospheric temperature causes the jet stream to move to lower latitudes and the eddies to become smaller. Near the standard state with Ts 200 K, the jets relocate themselves equatorward by 2° in latitude for every 5 K increase in the stratospheric temperature. A double-jet system, with centers at 30° and 60° latitude, occurs when the equatorial tropopause drops to 500 mb (for Ts 250 K), with the high-latitude component extending throughout the stratosphere. The eddy momentum flux mainly traverses poleward across the standard jet at 40°, in keeping with the predominantly equatorward propagation of the planetary waves. But when the jet lies at 30° (for Ts 225 K) the flux converges on the jet in keeping with planetary waves that propagate both equatorward and poleward. Two sets of such wave propagation occur in the double-jet system. As the troposphere becomes even shallower, the flux reverts to being primarily poleward across the jet (for Ts 260 K) but then becomes uniquely primarily equatorward across the jet (for Ts 275 K) before the circulation approaches extinction. Thus the existence of a predominantly poleward flux in the standard state appears to be parametrically fortuitous.
منابع مشابه
GCM Tests of Theories for the Height of the Tropopause
The sensitivity of the tropopause height to various external parameters has been investigated using a global circulation model (GCM). The tropopause height was found to be strongly sensitive to the temperature at the earth’s surface, less sensitive to the ozone distribution, and hardly sensitive at all to moderate changes in the earth’s rotation rate. The strong sensitivity to surface temperatu...
متن کاملResidual Circulation and Tropopause Structure
The effect of large-scale dynamics as represented by the residual mean meridional circulation in the transformed Eulerian sense, in particular its stratospheric part, on lower stratospheric static stability and tropopause structure is studied using a comprehensive chemistry–climate model (CCM), reanalysis data, and simple idealized modeling. Dynamical forcing of static stability as associated w...
متن کاملRecent widening of the tropical belt from global tropopause statistics: Sensitivities
[1] Several recent studies have shown evidence for a widening of the tropical belt over the past few decades. One line of evidence uses statistics of the tropopause height to distinguish between tropics and extratropics and defines tropical edge latitudes as those latitudes at which the number of days per year with tropopause heights greater than 15 km exceeds a certain threshold (typically 200...
متن کاملThe role of dynamics in total ozone deviations from their long-term mean over the Northern Hemisphere
Total ozone anomalies (deviation from the long-term mean) are created by anomalous circulation patterns. The dynamically produced ozone anomalies can be estimated from known circulation parameters in the layer between the tropopause and the middle stratosphere by means of statistics. Satellite observations of ozone anomalies can be compared with those expected from dynamics. Residual negative a...
متن کاملLong-term evolution of the cold point tropical tropopause: Simulation results and attribution analysis
[1] The height, pressure, and temperature of the cold point tropical tropopause are examined in three 140 year simulations of a coupled chemistry climate model. Tropopause height increases approximately steadily in the simulations at a mean rate of 63 ± 3 m/decade (2s confidence interval). The pressure trend changes near the year 2000 from 1.03 ± 0.30 hPa/decade in the past to 0.55 ± 0.06 hPa/d...
متن کامل